# Unit 5, Lesson 7: Connecting Representations of Functions

## 7.1: Which are the Same? Which are Different?

Here are three different ways of representing functions. How are they alike? How are they different?

| p | -2 | -1 | 0 | 1  | 2  | 3 |
|---|----|----|---|----|----|---|
| q | 4  | 2  | 0 | -2 | -4 | 6 |



$$y = 2x$$

## 7.2: Comparing Temperatures

The graph shows the temperature between noon and midnight in City A on a certain day. The table shows the temperature, T, in degrees Fahrenheit, for h hours after noon, in City B.



| h | 1  | 2  | 3  | 4  | 5  | 6  |
|---|----|----|----|----|----|----|
| T | 82 | 78 | 75 | 62 | 58 | 59 |

- 1. Which city was warmer at 4:00 p.m.?
- 2. Which city had a bigger change in temperature between 1:00 p.m. and 5:00 p.m.? Prove with evidence.
- 3. How much greater was the highest recorded temperature in City B than the highest recorded temperature in City A during this time?
- 4. Compare the outputs of the functions when the input is 3.

## 7.3: Comparing Volumes

The volume, V, of a cube with edge length s cm is given by the equation  $V = s^3$ .

The volume of a sphere is a function of its radius (in centimeters), and the graph of this relationship is shown here.



- 1. Is the volume of a cube with edge length s=3 greater or less than the volume of a sphere with radius 3? Show your evidence.
- 2. If a sphere has the same volume as a cube with edge length 5, estimate the radius of the sphere.
- 3. Compare the outputs of the two volume functions when the inputs are 2.

### *Are you ready for more?*

Estimate the edge length of a cube that has the same volume as a sphere with radius 2.5.

#### 7.4: It's Not a Race

Elena's family is driving on the freeway at 55 miles per hour.

Andre's family is driving on the same freeway, but not at a constant speed. The table shows how far Andre's family has traveled, d, in miles, every minute for 10 minutes.

| t  | d   |  |  |
|----|-----|--|--|
| 1  | 0.9 |  |  |
| 2  | 1.9 |  |  |
| 3  | 3.0 |  |  |
| 4  | 4.1 |  |  |
| 5  | 5.1 |  |  |
| 6  | 6.2 |  |  |
| 7  | 6.8 |  |  |
| 8  | 7.4 |  |  |
| 9  | 8   |  |  |
| 10 | 9.1 |  |  |

- 1. How many miles per minute is 55 miles per hour?
- 2. Who had traveled farther after 5 minutes? After 10 minutes?
- 3. How long did it take Elena's family to travel as far as Andre's family had traveled after 8 minutes?
- 4. For both families, the distance in miles is a function of time in minutes. Compare the outputs of these functions when the input is 3.

# 8.2: Proportional Relationships Define Linear Functions

- 1. Jasmine earns \$7 per hour mowing her neighbors' lawns.
  - a. Name the two quantities in this situation that are in a functional relationship. Which did you choose to be the independent variable? What is the variable that depends on it?
  - b. Write an equation that represents the function.
  - c. Here is a graph of the function. Label the axes. Label at least two points with input-output pairs.



- 2. To convert feet to yards, you multiply the number of feet by  $\frac{1}{2}$ .
  - a. Name the two quantities in this situation that are in a functional relationship. Which did you choose to be the independent variable? What is the variable that depends on it?
  - b. Write an equation that represents the function.
  - c. Draw the graph of the function. Label at least two points with input-output pairs.



## 8.3: Is it Filling Up or Draining Out?

There are four tanks of water. The amount of water in gallons, A, in Tank A is given by the function A=200+8t, where t is in minutes. The amount of water in gallons, B, in Tank B starts at 400 gallons and is decreasing at 5 gallons per minute. These functions work when  $t \ge 0$  and  $t \le 80$ .

- 1. Which tank started out with more water?
- 2. Write an equation representing the relationship between B and t.
- 3. One tank is filling up. The other is draining out. Which is which? How can you tell?
- 4. The amount of water in gallons, C, in Tank C is given by the function C = 800 7t. Is it filling up or draining out? Can you tell just by looking at the equation?
- 5. The graph of the function for the amount of water in gallons, D, in Tank D at time t is shown. Is it filling up or draining out? How do you know?



## 8.4: Which is Growing Faster?

Noah is depositing money in his account every week to save money. The graph shows the amount he has saved as a function of time since he opened his account.

Elena opened an account the same day as Noah. The amount of money E in her account is given by the function E = 8w + 60, where w is the number of weeks since the account was opened.



1. Who started out with more money in their account? Explain how you know.

2. Who is saving money at a faster rate? Explain how you know.

5. How much will Noah save over the course of a year if he does not make any withdrawals? How long will it take Elena to save that much?

6. Write an equation for each line.



## 9.1: Candlelight

A candle is burning. It starts out 12 inches long. After 1 hour, it is 10 inches long. After 3 hours, it is 5.5 inches long.

- 1. When do you think the candle will burn out completely?
- 2. Is the height of the candle a function of time? If yes, is it a linear function? Explain your thinking.

### **Practice Problems**

1. The equation and the graph represent two functions. Use the equation y=4 and the graph to answer the questions.



- a. When *x* is 4, is the output of the equation or the graph greater?
- b. What value for x produces the same output in both the graph and the equation? Provide evidence for your answer.

2. Lin uses an app to graph the charge on her phone.



- 1. When did she start using her phone?
- 2. When did she start charging her phone?
- 3. While she was using her phone, at what rate was Lin's phone battery dying?