$\qquad$
$\qquad$ Date $\qquad$

## Unit 5, Lesson 13: The Volume of a Cylinder

## 13.1: A Circle's Dimensions



Here is a circle. Points $A, B, C$, and $D$ are drawn, as well as Segments $\overline{A D}$ and $\overline{B C}$.

1. What is the area of the circle, in square units? Select all that apply.
a. $4 \pi$
b. $\pi 8$
c. $16 \pi$
d. $\pi 4^{2}$
e. approximately 25
f. approximately 50
2. If the area of a circle is $49 \pi$ square units, what is its radius? Explain your reasoning.

## 13.2: Circular Volumes

What is the volume of each figure, in cubic units? Even if you aren't sure, make a reasonable guess.


1. Figure A: A rectangular prism whose base has an area of 16 square units and whose height is 3 units.
2. Figure B: A cylinder whose base has an area of $16 \pi$ square units and whose height is 1 unit.
3. Figure C: A cylinder whose base has an area of $16 \pi$ square units and whose height is 3 units.

## 13.3: A Cylinder's Dimensions

1. Earlier you learned how to sketch a cylinder. Sketch one short and wide cylinder and sketch one tall and skinny cylinder. Label each one's radius and height.

## 13.4: A Cylinder's Volume

1. Here is a cylinder with height 4 units and diameter 10 units.

a. Shade the cylinder's base.
b. What is the area of the cylinder's base? Express your answer in terms of $\pi$.
c. What is the volume of the cylinder? Write your answer with $\pi$.
d. A silo is a cylindrical container that is used on farms to hold large amounts of goods, such as grain. On a particular farm, a silo has a height of 18 feet and diameter of 6 feet. Make a sketch of this silo and label its height and radius. How many cubic feet of grain can this silo hold? Use 3.14 as an approximation for $\pi$.

## Volume of a Cylinder

We can find the volume of a cylinder with radius $r$ and height $h$ using two ideas we've seen before:

- The volume of a rectangular prism is a result of multiplying the area of its base by its height.

The volume of a cylinder is the area of the base $\left(\pi r^{2}\right)$ times the height.


For example, take a cylinder whose radius is 2 cm and whose height is 5 cm . The base has an area of $4 \pi \mathrm{~cm}^{2}$ (since $\pi \cdot 2^{2}=4 \pi$ ), so the volume is $20 \pi \mathrm{~cm}^{3}$ (since $4 \pi \cdot 5=20 \pi$ ). Using 3.14 as an approximation for $\pi$, we can say that the volume of the cylinder is approximately $62.8 \mathrm{~cm}^{3}$.

In general, the base of a cylinder with radius $r$ units has area $\pi r^{2}$ square units and then we multiply by the height to get Volume.

$$
V=\pi r^{2} h
$$

## Volume of a Cylinder

We can find the volume of a cylinder with radius $r$ and height $h$ using two ideas we've seen before:

- The volume of a rectangular prism is a result of multiplying the area of its base by its height.

The volume of a cylinder is the area of the base $\left(\pi r^{2}\right)$ times the height.


For example, take a cylinder whose radius is 2 cm and whose height is 5 cm . The base has an area of $4 \pi \mathrm{~cm}^{2}$ (since $\pi \cdot 2^{2}=4 \pi$ ), so the volume is $20 \pi \mathrm{~cm}^{3}$ (since $4 \pi \cdot 5=20 \pi$ ). Using 3.14 as an approximation for $\pi$, we can say that the volume of the cylinder is approximately $62.8 \mathrm{~cm}^{3}$.

In general, the base of a cylinder with radius $r$ units has area $\pi r^{2}$ square units and then we multiply by the height to get Volume.

$$
V=\pi r^{2} h
$$

