Period _____ Date ____

Unit 5, Lesson 13: The Volume of a Cylinder

13.1: A Circle's Dimensions

2. If the area of a circle is 49π square units, what is its radius? Explain your reasoning.

13.2: Circular Volumes

What is the volume of each figure, in cubic units? Even if you aren't sure, make a reasonable guess.

- 1. Figure A: A rectangular prism whose base has an area of 16 square units and whose height is 3 units.
- 2. Figure B: A cylinder whose base has an area of 16π square units and whose height is 1 unit.
- 3. Figure C: A cylinder whose base has an area of 16π square units and whose height is 3 units.

13.3: A Cylinder's Dimensions

1. Earlier you learned how to sketch a cylinder. Sketch one short and wide cylinder and sketch one tall and skinny cylinder. Label each one's radius and height.

13.4: A Cylinder's Volume

1. Here is a cylinder with height 4 units and diameter 10 units.

a. Shade the cylinder's base.

b. What is the area of the cylinder's base? Express your answer in terms of π .

c. What is the volume of the cylinder? Write your answer with π .

d. A silo is a cylindrical container that is used on farms to hold large amounts of goods, such as grain. On a particular farm, a silo has a height of 18 feet and diameter of 6 feet. Make a sketch of this silo and label its height and radius. How many cubic feet of grain can this silo hold? Use 3.14 as an approximation for π .

Volume of a Cylinder

We can find the volume of a cylinder with radius *r* and height *h* using two ideas we've seen before:

• The volume of a rectangular prism is a result of multiplying the area of its base by its height.

The volume of a cylinder is the area of the base (πr^2) times the height.

For example, take a cylinder whose radius is 2 cm and whose height is 5 cm. The base has an area of 4π cm² (since $\pi \cdot 2^2 = 4\pi$), so the volume is 20π cm³ (since $4\pi \cdot 5 = 20\pi$). Using 3.14 as an approximation for π , we can say that the volume of the cylinder is approximately 62.8 cm³.

In general, the base of a cylinder with radius r units has area πr^2 square units and then we multiply by the height to get Volume.

$$V = \pi r^2 h$$

Volume of a Cylinder

We can find the volume of a cylinder with radius *r* and height *h* using two ideas we've seen before:

• The volume of a rectangular prism is a result of multiplying the area of its base by its height.

The volume of a cylinder is the area of the base (πr^2) times the height.

For example, take a cylinder whose radius is 2 cm and whose height is 5 cm. The base has an area of 4π cm² (since $\pi \cdot 2^2 = 4\pi$), so the volume is 20π cm³ (since $4\pi \cdot 5 = 20\pi$). Using 3.14 as an approximation for π , we can say that the volume of the cylinder is approximately 62.8 cm³.

In general, the base of a cylinder with radius r units has area πr^2 square units and then we multiply by the height to get Volume.

$$V = \pi r^2 h$$